Jumat, 25 Mei 2012

Kimia dan Fisika

Pengertian Kimia

Kimia (dari bahasa Arab: كيمياء, transliterasi: kimiya = perubahan benda/zat atau bahasa Yunani: χημεία, transliterasi: khemeia) adalah ilmu yang mempelajari mengenai komposisi, struktur, dan sifat zat atau materi dari skala atom hingga molekul serta perubahan atau transformasi serta interaksi mereka untuk membentuk materi yang ditemukan sehari-hari. Kimia juga mempelajari pemahaman sifat dan interaksi atom individu dengan tujuan untuk menerapkan pengetahuan tersebut pada tingkat makroskopik. Menurut kimia modern, sifat fisik materi umumnya ditentukan oleh struktur pada tingkat atom yang pada gilirannya ditentukan oleh gaya antaratom dan ikatan kimia.

Pengertian Fisika

Fisika (bahasa Yunani: φυσικός (fysikós), "alamiah", dan φύσις (fýsis), "alam") adalah sains atau ilmu tentang alam dalam makna yang terluas. Fisika mempelajari gejala alam yang tidak hidup atau materi dalam lingkup ruang dan waktu. Para fisikawan atau ahli fisika mempelajari perilaku dan sifat materi dalam bidang yang sangat beragam, mulai dari partikel submikroskopis yang membentuk segala materi (fisika partikel) hingga perilaku materi alam semesta sebagai satu kesatuan kosmos.

 

Sistem Periodik Unsur

A. Perkembangan Periodik Unsur
1. Berdasarkan Sifat Logam dan Non Logam
Unsur-unsur yang ada di alam dikelompokkan ke dalam 2 kelompok yaitu logam dan non logam. Pengelompokan ini merupakan metode paling sederhana , dilakukan dengan cara mengamati
ciri-ciri fisiknya

2. Berdasarkan Hukum Triade Dobereiner
Tahun 1817 Dobereiner menemukan adanya beberapa kelompok tiga unsur yang memiliki kemiripan sifat, yang ada hubungannya dengan massa atom. Kelompok ini dinamakan triade. Berdasarkan eksperimennya disimpulkan bahwa berat atom unsur kedua hampir sama atau mendekati berat rata-rata dari unsur sebelum dan
sesudahnya.
Pengelompokkan unsur dari Dobereiner dapat digambarkan sebagai berikut:

3. Hukum Oktaf dari Newland
Unsur-unsur dikelompokkan berdasarkan kenaikan massa atom relatifnya (Ar).
Unsur ke-8 memiliki sifat kimia mirip dengan unsur pertama; unsur ke-9 memiliki sifat yang mirip dengan unsur ke-2 dst. Sifat-sifat unsur yang ditemukan berkala atau periodik setelah 8 unsur disebut Hukum Oktaf.

Unsur H sifatnya sama dengan unsur F,unsur Li sifatnya sama dengan unsur Na dan seterusnya 3.Berdasarkan Periodik Mendeleev

Lothar Meyer lebih mengutamakan sifat-sifat kimia unsur sedangkan Mendeleev lebih
mengutamakan kenaikan massa atom.

Menurut Mendeleev : sifat-sifat unsur adalah fungsi periodik dari massa atom
relatifnya. Artinya : jika unsur-unsur disusun menurut kenaikan massa atom relatifnya, maka
Sifat tertentu akan berulang secara periodik.

4.Sistem Periodik Modern (Sistem Periodik Panjang)
Dikemukakan oleh Henry G Moseley, yang berpendapat bahwa sifat-sifat fisis dan kimia unsur merupakan fungsi periodik dari nomor atomnya .Artinya : sifat dasar suatu unsur ditentukan oleh nomor atomnya bukan oleh massa atom relatifnya (Ar).

Pengelompokkan ini dikenal dengan sistem periodik panjang yang diketahui dengan nama Sistem Periodik Modern. Sistem ini terdiri dari 2 hal yaitu golongan (lajur vertikal) dan periode(lajur horisontal)

http://upload.wikimedia.org/wikipedia/commons/thumb/8/84/Periodic_table.svg/450px-Periodic_table.svg.png

B.Golongan dan Periode Unsur-Unsur dalam Tabel Periodik

1. Golongan
Golongan adalah lajur tegak pada Tabel Peiodik Unsur. Unsur-unsur yang ada dalam satu lajur tegak adalah unsur-unsur segolongan, terdapat 8 golongan utama dan 8 golongan transisi.

Golongan utama tersebut adalah:
a. Golongan I A (alkali) terdiri dari unsur-unsur H, Li, Na, K, Rb,Cs,Fr
b. Golongan II A (alkali tanah) terdiri dari unsur-unsur Be, Mg, K,Sr,Ba,Ra
c. Golongan III A ( aluminum) terdiri dari unsur-unsur B,Al,Ga,In,Tl
d. Golongan IV A (karbon) terdiri dariunsur-unsur C,Si,Ge,Sn,Pb
e. Golongan V A (nitrogen) terdiri dari unsur-unsur N,P,As,Sb,Bi
f. Golongan VI A (oksigen) terdiri dari unsur-unsur O,S,Se,Te,Po
g. Golongan VII A (halogen) terdiri dari unsur-unsur F,Cl,Br,I,At
h. Golongan VIII A (gas mulia) terdiri dari unsur-unsur He,Ne,Ar,Kr,Xe,Rn

2. Periode

Perioda adalah lajur horisontal dalam sistem periodik modern terdiri dari 7 periode
a. Periode 1 (periode sangat pendek) berisi 2 unsur
b. Periode 2 (periode pendek) berisi 8 unsur
c. Periode 3 (periode pendek) berisi 8 unsur
d. Periode 4(periode panjang) berisi 18 unsur
e. Periode 5 (periode panjang) berisi 18 unsur
f. Periode 6 (periode sangat panjang ) berisi 32 unsur
g. Periode 7 (periode sangat panjang) berisi 28 unsur,belum lengkap karena maksimum 32 unsur
 
Sistem periodik modern (SPU) disusun berdasarkan kenaikan nomor atom (lajur horizontal atau periode) dan kemiripan sifat (lajur vertikal atau golongan).
Sistem periodik modern terdiri atas 7 periode dan 8 golongan. Berdasarkan golongannya, unsur-unsur SPU dibedakan menjadi:
 a. Golongan utama (Golongan A)
b. Golongan transisi (Golongan B)
 
Berdasarkan jenis orbital yang ditempati oleh elektron terakhir, unsur-unsur dalam sistem periodik dibagi atas blok s, blok p, blok d, dan blok f.
a. Blok s: golongan I A dan II A. Blok s tergolong logam aktif, kecuali H (nonlogam) dan He (gas mulia).
b. Blok p: golongan III A sampai dengan VIII A. Blok p disebut juga unsur wakil karena terdapat semua jenis unsur (logam, nonlogam, dan metaloid).
c. Blok d: golongan III B sampai II B. Unsur blok d disebut juga unsur transisi, semuanya
tergolong logam.
d. Blok f: unsur blok f ini disebut juga unsur transisi dalam, semuanya terletak pada golongan IIIB, periode 6 dan 7.

1) Periode 6 dikenal sebagai deret lantanida (4f).
2) Periode 7 dikenal sebagai deret aktinida (5f)

C. Hubungan Konfigurasi Elektron dengan Sistem Periodik
Hubungan antara letak unsur dalam sistem periodik dengan konfigurasi elektronnya
adalah sebagai berikut.
1. Nomor periode sama dengan jumlah kulit
2. Nomor golongan sama dengan jumlah elektron valensi
Contoh soal:
Tentukan golongan dan periode dari unsur !
Jawab:
mempunyai nomor atom 35 sehingga konfigurasi elektronnya X = 2.8.18.7
Elektron valensi= 7 ► Golongan VII A, jumlah kulit 4►periode 4
Sumber: http://kimia-asyik.blogspot.com/2009/04/sistem-periodik-unsur.html

Sifat Keperiodikan Unsur
Sifat periodik adalah sifat yang berubah secara beraturan sesuai dengan kenaikan nomor Atom, yaitu dari kiri kekanan dalam satu periode atau dari kiri kekanan dalam satu golongan.
1. Jari-jari Atom
Jari-jari atom adalah jarak dari inti hingga kulit elektron terluar.

Semakin besar nomor atom unsur-unsur segolongan, semakin banyak pula jumlah kulitelektronnya, sehingga semakin besar pula jari-jari atomnya.
Jadi : dalam satu golongan (dari atas ke bawah), jari-jari atomnya semakin besar.
Dalam satu periode (dari kiri ke kanan), nomor atomnya bertambah yang berarti semakin bertambahnya muatan inti, sedangkan jumlah kulit elektronnya tetap. Akibatnya tarikan inti
terhadap elektron terluar makin besar pula, sehingga menyebabkan semakin kecilnya jari-jari
atom.
Jadi : dalam satu periode (dari kiri ke kanan), jari-jari atomnya semakin kecil.

2.Afinitas Elektron
Adalah energi yang dilepaskan atau diserap oleh atom netral dalam bentuk gas apabila menerima sebuah elektron untuk membentuk ion negatif
Unsur golongan utama memiliki afinitas elektron bertanda negatif, kecuali golongan IIA dan VIIIA.
Afinitas elektron terbesar dimiliki golongan VIIA..
Dalam satu golongan (dari atas ke bawah), harga afinitas elektronnya semakin kecil.
Dalam satu periode (dari kiri ke kanan), harga afinitas elektronnya semakin besar.
Contoh: Cl(g) + e¯ → Cl¯(g) (∆H=-348kj)

3.Energi Ionisasi
Adalah energi minimum yang diperlukan atom netral dalam wujud gas untuk melepaskan satu elektron sehingga membentuk ion bermuatan +1 (kation).
Jika atom tersebut melepaskan elektronnya yang ke-2 maka akan diperlukan energi yang lebih besar (disebut energi ionisasi kedua), dst.
EI 1< style=”font-style: italic;”>bertambah sehingga gaya tarik inti terhadap elektron terluar semakin kecil. Akibatnya elektron terluar semakin mudah untuk dilepaskan.
Dalam satu periode (dari kiri ke kanan), EI semakin besar karena jari-jari atom semakinkecil sehingga gaya tarik inti terhadap elektron terluar semakin besar/kuat. Akibatnya elektron terluar semakin sulit untuk dilepaskan .
Contoh : 11 Na + energi ionisasi → Na+ + e

4.Keelektronegatifan
Adalah kemampuan suatu unsur untuk menarik elektron dalam molekul suatu senyawa (dalam ikatannya).Diukur dengan menggunakan skala Pauling yang besarnya antara 0,7 (keelektronegatifan Cs) sampai 4 (keelektronegatifan F).
Dalam satu periode (dari kiri ke kanan), harga keelektronegatifan semakin besar.
Dalam satu golongan (dari atas ke bawah), harga keelektronegatifan semakin kecil.
Dalam satu golongan dari atas ke bawah
1.Afinitas elektron semakin kecil
2.Jari-jari atom semakin besar
3.Energi ionisasi semakin kecil
4.Elektronegativitas semakin kecil
Dalam satu perioda dari kiri ke kanan
1.Jari-jari atom semakin kecil
2. Afinitas elektron semakin besar
3. Energi ionisasi semakin besar
4. Elektronegativitas semakin besar
Contoh soal:
Tentukan unsur mana yang mempunyai keelektronegatifan yang lebih besar?
a. Karbon(nomor atom= 6) dengan Oksigen (nomor atom=8)
b. Fluorin (nomor atom=9) dengan Klorin(nomor atom=17)
Jawab
a. Karbon mempunyai konfigurarasi elektron C= 2.4, terletak pada golongan IVA dan periode 2
Oksigen mempunyai konfigurasi elektron O=2.6, terletak pada golongan VI A dan periode 2
Dalam satu periode keelektronegatifan dari kiri ke kanan semakin besar.Letak O sebelah kanan dari C sehingga keelektronegatifan O lebih besar dari C
b. Fluorin mempunyai konfigurasi elektron F=2.7, terletak pada golongan VII A dan periode 2
Klorin mempunyai konfigurasi elektron Cl=2.8.7, terletak pada golongan VII A dan periode 3
Dalam satu golongan keelektronegatifan dari atas ke bawah semakin kecil. Letak Cl dibawah F sehingga keelektronegatifan Fluorin lebih besar dari Cl.

Pengertian energi
Definisi energi adalah daya kerja atau tenaga, energi berasal dari bahasa Yunani yaitu energia yang merupakan kemampuan untuk melakukan usaha. Energi merupakan besaran yang kekal, artinya enegi tidak dapat diciptakan dan dimusnahkan, tetapi dapat diubah dari bentuk satu ke bentuk yang lain. Ditinjau dari asalnya energi mempunyai bermacam-macam bentuk seperti berikut :


  1. Energi potensial
  2. Energi kinetic
  3. Energi kimia,
  4. Energi kalor
  5. Energi listrik
  6. Energi bunyi
  7. Energi nuklir
  8. Energi radiasi
 
WUJUD ZAT DAN PERUBAHANNYA
Berdasarkan   wujudnya,   zat   dapat   dibedakan   menjadi   tiga yaitu zat padat, zat cair, dan zat gas. Bagaimana sifat-sifat dari wujud      zat  tersebut?     Wujud     zat  dapat    berubah.     Hal   ini pengaruhi oleh adanya kalor. Marilah kita pelajari lebih lanjut agar lebih jelas
  1. Sifat Zat Berdasarkan Wujudnya
Zat padat adalah zat yang mempunyai bentuk dan volume tetap. Dilihat dari susunan molekul dan ikatan antarmolekulnya, zat padat mempunyai susunan molekul yang  teratur dan gaya tarik-menarik antarmolekulnya yang kuat. Contoh zat padat antara lain batu, meja, kapur tulis, papan tulis, dan pensil. Dapatkah kamu menyebutkan contoh zat padat lainnya yang ada di sekitarmu?
Adapun zat cair adalah zat yang mempunyai volume tetap, tetapi bentuknya selalu berubah-ubah mengikuti tempatnya. Dilihat dari susunan molekul dan ikatan antarmolekulnya zat cair mempunyai susunan molekul yang kurang teratur dan jarak antarmolekulnya yang agak renggang sehingga gaya tarik menarik antarmolekulnya relatif lebih rendah dibandingkan dengan zat padat. Contoh zat cair antara lain air sirop, air teh, dan air mineral. Apakah gas itu? Gas adalah zat yang mempunyai bentuk dan volume yang tidak tetap. Hal ini disebabkan karena susunan molekul-molekul gas sangat tidak teratur sehingga gaya tarik-menarik antarmolekulnya sangat lemah. Contoh zat gas adalah udara. Perbedaan sifat-sifat zat padat, zat cair, dan zat gas dapat kamu lihat pada tabel.

Tabel : Sifat-sifat zat padat, cair, dan gas


Nah, dari uraian tersebut kamu telah memahami bahwa zat padat, zat cair, dan gas tersusun dari beberapa molekul. Molekul ini merupakan komponen pembangun suatu zat yang sangat aneh karena molekul-molekul tersebut terus bergerak, kecuali pada suhu teoritis yang disebut suhu nol mutlak.
Apakah suhu nol mutlak itu? Suhu nol mutlak adalah suhu 0 K atau -273 °C. Tingkat panas suatu zat disebut suhu zat. Kamu dapat mengukur suhu zat dengan alat yang dinamakan termometer.
Laju gerak molekul secara bertahap berkurang bersama  turunnya suhu. Saat mencapai suhu kira-kira -273,16 °C atau 0 K gerak molekul itu berhenti dan tidak ada lagi panas yang dapat diukur. Dalam gas terdapat sejumlah tarikan tertentu antara molekulnya. Jika suhu gas itu diturunkan, gerak molekulnya akan bertambah lamban. Molekul-molekul itu tidak lagi berjauhan sehingga tarikan di antara molekul tersebut menjadi lebih kuat. Jika suhunya cukup rendah, molekul- molekul gas akan mengumpul dan gas itu akan menjadi zat cair. Apabila suhunya diturunkan terus, gerakan molekul akan semakin lamban dan gaya tarikannya akan semakin kuat sehingga lama-kelamaan zat cair itu berubah menjadi zat padat. Zat padat menempati ruang yang lebih kecil daripada gas.
Apakah zat cair dapat berubah menjadi gas?
Tentunya kamu sudah mengetahui bahwa jika baju basah digantung di udara terbuka, lama-kelamaan baju akan kering. Hal ini membuktikan  bahwa zat cair yang terdapat dalam baju basah dapat berubah menjadi gas jika mendapatkan panas dari lingkungan sekitarnya. Contoh lainnya, yaitu ketika kamu meletakkan semangkuk air dalam ruangan dengan pemanasan yang baik, permukaan air lama-kelamaan akan turun dan pada suatu saat airnya akan lenyap sama sekali. Kedua peristiwa ini dinamakan penguapan.
  1. Susunan dan Gerak Partikel Suatu Zat
Pernahkah kamu mengamati orang yang sedang menggergaji kayu? Kayu yang digergaji akan menghasilkan serbuk-serbuk kayu. Serbuk-serbuk kayu tersebut sebenarnya merupakan zat penyusun dari kayu. Jika kamu amati serbuk kayu tersebut dengan menggunakan mikroskop elektron, kamu dapat melihat partikel-partikel sangat kecil yang saling berikatan. Nah, partikel-partikel inilah yang sebenarnya memengaruhi sifat-sifat pada zat padat, zat cair, dan zat gas.
Tahukah kamu apakah partikel itu?  Partikel  atau molekul adalah bagian terkecil dari suatu zat yang masih memiliki sifat zat tersebut. Sebagai contoh ketika kamu membuat teh manis dengan menggunakan gula pasir. Saat gula pasir dimasukkan ke dalam air teh panas maka akan terjadi tumbukan antara partikel-partikel gula pasir dengan partikel air sehingga gula pasir akan larut. Gula pasir ini akan lebih cepat larut karena air yang kamu gunakan adalah air panas. Pelarutan akan lebih cepat lagi jika kamu mengaduknya. Partikel-partikel gula pasir dalam wujud cair bergerak ke seluruh air teh yang terdapat dalam gelas sehingga air teh tadi menjadi manis. Hal ini membuktikan bahwa partikel masih mempunyai sifat yang sama dengan zat asalnya. Tahukah kamu bagaimana susunan dan gerak partikel pada berbagai wujud zat? Perhatikan gambar dibawah ini!


Gambar : (a)   Susunan partikel zat padat, (b) susunan partikel zat cair, dan (c) susunan partikel zat gas
a) Partikel Zat Padat
Zat padat tersusun atas partikel-partikel yang teratur dan mempunyai jarak antarpartikel yang sangat rapat. Gaya tarik- menarik antarpartikel zat padat sangat kuat. Hal ini menyebabkan partikel tidak dapat bergerak secara bebas untuk berpindah tempat. Keadaan ini menyebabkan zat padat dapat mempertahankan bentuk dan volumenya sehingga zat padat selalu  mempunyai bentuk dan volume yang tetap.
b) Partikel Zat Cair
Berbeda dengan zat padat, zat cair mempunyai susunan partikel yang kurang teratur dan kurang rapat dibandingkan susunan partikel pada zat padat. Hal inilah yang menyebabkan partikel-partikel dapat bergerak bebas untuk berpindah tempat. Akan tetapi, partikel-partikel penyusun zat cair tidak dapat memisahkan diri dari kelompoknya. Keadaan ini menyebabkan volume zat cair selalu tetap, walaupun bentuknya selalu berubah mengikuti tempatnya.
c) Partikel Zat Gas
Pada zat gas, jarak antarpartikel sangat berjauhan sehingga gaya tarik-menarik antarpartikel sangat lemah.  Partikel- partikel ini bergerak sangat bebas dan cepat dalam wadahnya. Hal ini menyebabkan zat gas tidak dapat mempertahankan bentuk dan volumenya sehingga bentuk dan volume zat gas selalu berubah mengikuti ruang yang ditempatinya.
2. Kohesi dan Adhesi
Di antara partikel-partikel yang sejenis dan yang tidak sejenis dapat terjadi gaya tarik-menarik antarpartikel. Gaya tarik- menarik antarpartikel yang sejenis dinamakan kohesi, sedangkan gaya tarik-menarik antarpartikel yang tidak sejenis dinamakan adhesi.
Pernahkah kamu mengamati permukaan raksa di dalam termometer? Permukaan raksa pada termometer jika kamu amati dengan cermat akan terlihat tidak datar, tetapi sedikit melengkung pada bagian raksa yang menempel pada kaca, perhatikan gambar dibawah ini.




(a) Meniskus cekung dan (b) meniskus cembung.

Kelengkungan permukaan zat cair dalam sebuah tabung kaca ini dinamakan meniskus. Meniskus ada dua macam, yaitu meniskus cekung dan meniskus cembung. Nah, untuk memahami tentang meniscus cekung dan meniskus cembung, lakukanlah kegiatan berikut:


Dari kegiatan di atas, kamu dapat melihat bahwa bentuk permukaan air dan raksa tidaklah datar. Bentuk permukaan air pada tabung reaksi terlihat cekung, peristiwa ini dinamakan meniskus cekung. Meniskus cekung terjadi karena gaya tarik- menarik antarpartikel air dan kaca (adhesi) lebih besar daripada gaya tarik-menarik antarpartikel air (kohesi). Hal ini menyebabkan air membasahi dinding kaca.
Bentuk permukaan raksa pada tabung reaksi terlihat cembung, peristiwa ini dinamakan meniskus cembung. Meniskus cembung terjadi karena gaya tarik-menarik antarpartikel air dan kaca (adhesi) lebih kecil daripada gaya tarik-menarik antar- partikel air (kohesi). Hal ini menyebabkan raksa tidak membasahi dinding kaca.
Pernahkah kamu memerhatikan air pada daun talas? Air tidak dapat membasahi daun talas karena tetesan air di daun talas selalu membentuk bola-bola kecil. Atau dapat dikatakan gaya kohesi molekul-molekul air lebih besar dari gaya adhesi molekul air dengan molekul daun talas.
Adanya adhesi selain menimbulkan meniskus juga menimbulkan kapilaritas. Bagaimana peristiwa kapilaritas terjadi? Perhatikan bagaimana minyak tanah pada kompor dapat naik melalui sumbu kompor. Atau, perhatikan bagaimana air di dalam tanah dapat naik dari akar sampai ke daun. Nah, agar kamu dapat mengetahui bagaimana peristiwa tersebut dapat terjadi, lakukanlah kegiatan berikut.


Dari Kegiatan 2 kamu dapat mengamati bahwa tinggi permukaan air dalam pipa kapiler lebih tinggi daripada tinggi air dalam bejana. Hal ini berarti permukaan air naik dalam pipa kapiler. Jika diameter pipa kapiler makin kecil, tinggi permukaan air dalam pipa kapiler makin tinggi.
Pada pipa kapiler yang dimasukkan dalam wadah berisi air raksa, tinggi permukaan raksa dalam pipa kapiler lebih rendah daripada tinggi raksa dalam bejana. Hal ini berarti permukaan raksa turun dalam bejana. Jika diameter pipa kapiler makin kecil, tinggi permukaan raksa dalam pipa kapiler lebih rendah.

Gambar : Permukaan air pada pipa kapiler naik.
3. Perubahan Wujud Zat
Pernahkah kamu melihat embun? Embun yang kamu lihat pada daun terjadi karena uap air dari udara. Peristiwa ini disebut mengembun, yaitu perubahan wujud dari zat gas menjadi zat cair. Saat Matahari mulai bersinar, embun menguap kembali.
Tahukah kamu contoh perubahan wujud zat yang lainnya? Seperti yang telah dijelaskan di depan, wujud zat dibedakan atas zat padat, cair  dan gas. Ketika kamu memasak air, pernahkah kamu mengamati apa yang terjadi ketika air dipanaskan? Air yang dipanaskan lama-kelamaan akan mendidih. Ketika air  mencapai suhu 100 °C pada tekanan 1 atm, air akan berubah menjadi uap. Peristiwa perubahan wujud dari air (zat cair) menjadi uap (zat gas) dinamakan menguap.
Nah, agar kamu lebih memahami bagaimana perubahan wujud suatu zat, lakukanlah kegiatan berikut.












Pada kegiatan 3 kamu dapat mengamati perubahan wujud air menjadi uap yang disebut menguap dan perubahan wujud dari uap menjadi air yang disebut mengembun.
Pernahkah kamu menyimpan kapur barus di lemari pakaianmu? Apa yang terjadi dengan kapur barus yang telah disimpan cukup lama? Kapur barus yang disimpan di udara terbuka lama-kelamaan akan habis. Tahukah kamu peristiwa perubahan wujud apa yang terjadi pada kapur barus? Nah, agar lebih memahaminya lakukanlah kegiatan berikut.


Kapur barus yang dipanaskan, akan berubah menjadi gas. Hal ini dapat kamu rasakan dari bau gas yang tercium sebagai hasil pemanasan kapur barus. Peristiwa perubahan wujud dari kapur barus (zat padat) menjadi uap (zat gas) dinamakan menyublim.  Peristiwa yang terjadi pada uap kapur barus (zat gas) menjadi serbuk-serbuk putih mengkilap (zat padat) yang menempel pada kertas putih dinamakan mengkristal.
Pernahkah kamu membuat es batu? Air dalam plastik ketika kamu masukkan ke dalam lemari es (freezer) akan berubah menjadi es. Peristiwa perubahan wujud dari air (zat cair) menjadi es (zat padat) dinamakan membeku. Nah, ketika kamu ambil es batu, kemudian dibiarkan di tempat terbuka, es batu tersebut lama-kelamaan akan berubah wujud menjadi air kembali. Peristiwa perubahan wujud dari es batu (zat padat) menjadi air (zat cair) dinamakan mencair atau melebur.

1. Sifat Fisika
Sifat fisika merupakan sifat materi yang dapat dilihat secara langsung dengan indra. Sifat fisika antara lain wujud zat, warna, bau, titik leleh, titik didih, massa jenis, kekerasan, kelarutan, kekeruhan, dan kekentalan.
Sifat Fisik: Sifat yang tidak mengubah sifat kimia materi
Contoh dari sifat fisik adalah: warna, bau, titik beku, titik didih, titik lebur, spektrum infra-merah, daya tarik (paramagnetik) atau tolakan (diamagnetic) untuk magnet, opacity, viskositas dan densitas. Ada lebih banyak contoh. Perhatikan bahwa masing-masing mengukur properti tidak akan mengubah sifat dasar dari substansi.
2. Sifat kimia umumnya merujuk pada sifat suatu materi pada kondisi ambien atau sekitar, yaitu pada suhu kamar, tekanan atmosfer, dan atmosfer beroksigen). Sifat ini terutama timbul pada reaksi kimia dan hanya dapat diamati dengan mengubah identitas kimiawi suatu zat. Sifat kimia dapat digunakan untuk menyusun klasifikasi kimia.
Sifat kimia biasanya digunakan untuk menyatakan, antara lain:
a. elektronegativitas
b. potensial ionisasi
c. jenis ikatan kimia yang dibentuk, antara lain logam, ion, dan kovalen.
Sifat kimia: Properti yang mengubah sifat kimia materi tha
Contoh sifat kimia adalah: panas pembakaran, reaktivitas dengan air, PH, dan gaya gerak listrik.
Sifat yang lebih kita bisa mengidentifikasi untuk substansi, semakin baik kita tahu sifat zat itu. Properti ini dapat membantu kita model substansi dan dengan demikian memahami bagaimana zat ini akan berperilaku dalam berbagai kondisi.

 Pengertian Dimensi dan Besaran


Dimensi besaran fisis diwakili dengan simbol, misalnya M, L, T yang mewakili massa, panjang (mungkin dari istilah bahasa Inggris: length), dan waktu (mungkin dari istilah bahasa Inggris: time). Sebagaimana terdapat satuan turunan yang diturunkan dari satuan dasar, terdapat dimensi dasar primer besaran fisis dan dimensi sekunder besaran yang diturunkan dari dimensi dasar primer. Misalnya, dimensi besaran kecepatan adalah jarak/waktu (L/T) dan dimensi gaya adalah massa × jarak/waktu² atau ML/T2.
 
Satuan dan dimensi suatu variabel fisika adalah dua hal berbeda. Satuan besaran fisis didefinisikan dengan perjanjian, berhubungan dengan standar tertentu (contohnya, besaran panjang dapat memiliki satuan meter, kaki, inci, mil, atau mikrometer), namun dimensi besaran panjang hanya satu, yaitu L. Dua satuan yang berbeda dapat dikonversikan satu sama lain (contohnya: 1 m = 39,37 in; angka 39,37 ini disebut sebagai faktor konversi), sementara tidak ada faktor konversi antarlambang dimensi.

Berikut adalah tabel yang menunjukkan dimensi dan satuan tujuh besaran dasar dalam sistem SI
 


Besaran dasar      Dimensi     Satuan SI
Massa              M           kg
Panjang          L           m
Waktu          T           s
Suhu          ?           K
Arus listrik          E           A
Intensitas cahayaI           cd
Jumlah zat          A
     mol






http://andriworldwide.blogspot.com/2011/05/pengertian-dimensi-besaran-dan-satuan.html

http://omiimo.wordpress.com/ipa1/sifat-fisika-kimia/sifat-fisika-kimia/
http://dsofina.wordpress.com/2011/01/10/a-sifat-zat-berdasarkan-wujudnya/
 
http://id.shvoong.com/exact-sciences/physics/2110370-pengertian-energi/


http://id.wikipedia.org/wiki/Fisika

http://id.wikipedia.org/wiki/Kimia


Tidak ada komentar:

Posting Komentar